
Gradient descent: intuition
on the example of linear regression

Lecture 15
by Marina Barsky



Iterative solution to Linear regression

Why do we need another algorithm? We already have a closed-form solution

● The gradient descent is used in many other Machine Learning algorithms

● It is useful to look at it at the very basic example of linear regression

Gradient is a partial derivative of a function that shows how fast the function 

grows and in which direction (descent)



Fitting the best line as optimization problem

1. We start with the random line

2.   We compute SSR

3.   We adjust the parameters of the line into the direction of gradient 

descent



Example: optimize intercept only (b)

We set the slope to a constant: say 0.65

Let’s say our first guess is the line:

f(x) = 0.65x + 0

We evaluate how well the line fits the 

data with SSR as before

The sum of squared errors is called a loss 

function

The optimization task: minimize the loss 

function by learning a better intercept
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Compute the error

f(x) = 0.65x + 0

Point x1 error:

Predicted: 0.65, actual: 0

error (0-0.65)2 = 0.1225

E: 0.1225+

Data:{[1,0], [4,1], [5,3]}
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Compute the error

f(x) = 0.65x + 0

Point x2 error:

Predicted: 2.6, actual: 1

error (1-2.6)2 =2.56

E: 0.1225+2.56

Data:{[1,0], [4,1], [5,3]}
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Compute the error

f(x) = 0.65x + 0

Point x3 error:

Predicted: 3.25, actual: 3

error (3-3.25)2 = 0.0625

E: 0.1225+2.56+0.0625=2.745

Data:{[1,0], [4,1], [5,3]}
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Error as function of the intercept

Let’s plot the value of E as a function of 

the intercept b: 

E = f(b)

E(0): 0.1225+2.56+0.0625=2.745
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Where to go from here to make E smaller?

Should we increase or decrease the 

value of b? 7
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If we increase, we get even 

bigger error!
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Where to go from here?



Where to go from here?
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If we decrease the intercept, 

we get better (smaller) error, 

moving closer to the data 

points
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How do we know what direction to 

take? 

Derivative of E(b)!

Where to go from here?



Derivative of E(b) at point b=0:

E(b) = ∑i from 1 to n(yi - (0.65xi+b))2

∂E/∂b = ∑i from 1 to n2(yi - (0.65xi+b))* (-1)

If we substitute values of all (xi,yi), we find that 

the derivative of E(b) at point b=0 is positive

That means the function grows and we need 

to move into the opposite direction (decrease 

b)

By how much? 

Derivative tells us how fast the function grows, 

so we can decrease by the value proportional 

to the rate of growth: the steeper the line at 

this point the more we need to change the 

value of b
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Derivative of E(b) at point b=0:

E(b) = ∑i from 1 to n(yi - (0.65xi+b))2

∂E/∂b = ∑i from 1 to n2(yi - (0.65xi+b))* (-1)

In order to move slowly towards the 

minimum (derivative=0), we multiply the 

rate of growth by a constant called 

learning rate η

Traditional default value for the learning 

rate is 0.1 or 0.01. These values can be 

adjusted depending on the problem
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Will we always reach the optimal solution 
with this method?



To learn both a and b at the same time

● We take a derivative of the 

error function E(x,y) at some 

randomly selected initial 

point (a,b)

● We differentiate with respect 

to x and with respect to y

separately (partial 

derivatives)

● We find how to change 

current values of a and b - in 

which direction and by how 

much 



Very detailed video about gradient descent

LINK

By Statquest

https://www.youtube.com/watch?v=sDv4f4s2SB8

